
Journal of Photochemistry and Photobiology A: Chemistry 180 (2006) 271–276

Classical aspects emerging from local control
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Stefanie Gräfe, Philipp Marquetand, Volker Engel ∗
Institut für Physikalische Chemie, Am Hubland, 97074 Würzburg, Germany

Available online 28 February 2006

This work is dedicated to Prof. Volker Staemmler on the occasion of his 65th birthday.

Abstract

The question in how far classical mechanics can be used to describe coherent control processes in molecules is addressed within the framework of
local control theory. Therefore, quantum and classical calculations are compared for a model proton transfer process and also for the multi-photon
infrared dissociation of the HOD molecule. It is shown that control fields can be derived classically as long as wave packet dispersion is not too
large. This hints at further applications which might be helpful to devise control fields for complex molecular systems being present in biological
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. Introduction

Elementary processes in chemistry and biology follow fun-
amental physical laws. The motion of electrons and nuclei and
heir interaction with electromagnetic fields, in general, have to
e described employing the concepts of quantum mechanics and
uantum electrodynamics. In many cases, however, a quantiza-
ion of the external fields is not necessary and the latter may be
mplemented in their classical form. Moreover, a treatment of
he particle motion within the frame of classical mechanics is
ften sufficient. This, actually, is a common approach in theo-
etical biology and chemistry if dealing with complex systems:
olving the classical equations of motion, combined with sta-
istical averaging, is at the heart of molecular dynamics (MD)
imulations [1,2]. The present issue of this journal is concerned
ith the control of chemical and biological reactions [3–7] with

he help of ultrashort pulses of radiation, commonly obtained
rom modern laser light sources [8]. The concept of coherence
s of central significance here. Coherent light has the property
o produce interference, for a detailed discussion and more spe-
ific definition of coherence see the classical text by Born and

Wolf [9]. Employing such fields, it is then possible to transfer
coherences into a quantum system. As time goes along, the sys-
tem might feel fluctuations introduced by a surrounding bath so
that the fixed phases, now present in the quantum mechanical
wave functions, are disturbed. It is to be noted, however, that
this destruction of coherence relies on an arbitrary separation of
the world into a sub-quantum system and a bath.

The possibility of interference is not included if one regards
particles, i.e. atoms bound together in molecules, as classical
objects. In the spirit of what has been said above, this suggests
that a classical description of coherent control processes, relying
on wave-like properties, is not possible. Thus we are faced with
a dilemma: on one hand, the treatment of complex molecules
is only feasible employing the classical equations of motion
(if all interactions are known sufficiently accurate), and on the
other hand, ‘coherent control’ needs a quantum description. As
a consequence, it seems not to be possible to find a consistent
theoretical approach for the treatment of control processes
in complicated systems. In this paper it is shown that this, in
general, might be a too pessimistic point of view. Employing
model systems, it is demonstrated that the pulses needed to
∗ Corresponding author. Tel.: +49 931 888 6376.
E-mail address: voen@phys-chemie.uni-wuerzburg.de (V. Engel).

perform a certain task can be derived, within limits, from
classical trajectories. In order to arrive at some reliable results,
classical and quantum calculations are contrasted for the case of
a proton transfer in a two-mode system, and also for the infrared
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dissociation of the HOD molecule. These studies are undertaken
with the hope that, if the limitations of a classical treatment
are characterized in the treatment of smaller model systems,
applications to larger molecules can be judged on these grounds.

The methodology employed below is that of ‘local control’
[10–13]. Within this approach it is the system’s dynamics which
determines the control field at any instant of time. This enables us
to get an insight into the relation between the dynamics and the
properties of the field [14,15]. This approach is related to what
is known as tracking of inverse control [16,17] but is somehow
simpler in its formulation.

The paper is organized as follows: the strategy of ‘local con-
trol’ is outlined in Section 2. Numerical results are contained in
Section 3, and a summary is given in Section 4.

2. Local control theory: quantum and classical
approach

In the examples treated below, the reactive processes are ini-
tiated by an energy transfer between molecules and an external
electric field. Within the quantum approach, the Hamilton oper-
ator H(t) consists of a part H0 belonging to the unperturbed
molecule and a dipole-perturbation term W(t) which includes
the interaction with the classical field:

H(t) = H +W(t) = (T (P) + V (R)) − µ(R)E(t). (1)
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linear function of a single coordinate (µ(R) =µ0 +µ1R). In this
case one obtains

d

dt
〈H0〉t = µ1

m
E(t)〈P〉t . (4)

Thus, the rate is proportional to the expectation value of the
momentum operator. As a result, if the field is chosen to be
in phase with the mean momentum, energy is pumped into the
system. On the other hand, if it is determined to be out of phase
with 〈P〉t, energy is taken away from the system.

Next, we turn to a classical treatment of the driven oscillator
with the Hamilton function

H(t) = (P(t))2

2m
+ V (R(t)) − µ(R(t))E(t)

= H0(t) − (µ0 + µ1R(t))E(t), (5)

where now, R(t) and P(t) denote position and momentum, respec-
tively. The energy rate is then evaluated taking Hamilton’s equa-
tions of motion into account:

d

dt
H0(t) = µ1

m
E(t)P(t). (6)

This result is the classical equivalent of the quantum expres-
sion Eq. (4) and it leads to identical conclusions concerning the
relation between driving field, dynamics and energy transfer.

From the above equations one might conclude that, under
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ere, T(P) denotes the kinetic energy operator depending on the
omentum operators (P) of all particles. The coordinates enter-

ng into the potential energy expression V(R) are abbreviated as
R). Furthermore, µ(R) is the projection of the dipole moment
n the polarization vector of the field, and E(t) describes the
ime-dependence of the latter.

The efficiency of the field-molecule energy transfer is char-
cterized by a rate calculated as the time-derivative of the expec-
ation value of H0:

d

dt
〈H0〉t = d

dt
〈ψ(t)|H0|ψ(t)〉 = i

h̄
〈[H,H0]〉t , (2)

here the time-dependent Schrödinger equation for the wave
unctionψ(t) is used in deriving the last equality. The commuta-
or [H, H0] appearing in the rate expression is readily evaluated,
ielding

d

dt
〈H0〉t = i

h̄
E(t)〈[T (P), µ(R)]〉t . (3)

his is the central equation which is employed below to control
arious processes in molecules: because the field E(t) appears
n the rate expression, it may (in principle) be chosen to yield
positive rate amounting to a net absorption of energy by the

ystem (this will be called ‘heating’, in what follows). Alterna-
ively, it can be determined in a way that the rate is negative,
eading to an energy loss (‘cooling’) of the system.

The connection between the quantum dynamics and a con-
rol field being able to induce heating or cooling is most easily
stablished in the case of the one-dimensional motion of a par-
icle with mass m, where the dipole moment is assumed to be a
ertain circumstances, a quantum and classical derivation of con-
rol fields (within the frame of local control theory) might lead
o similar fields. In how far this conclusion is possibly true is
xplored in the next section.

. Results

.1. Particle transfer

As a first example, the transfer of a particle with proton mass
is treated. Intramolecular or intermolecular proton (or hydro-

en) transfer are extremely important elementary steps in many
hemical reactions [18–20]. Within a simplified model, we treat
system with two degrees of freedom x and y, where the poten-

ial surface exhibits two minima. The potential is parameterized
s follows:

(x, y) = ∆+ ax4 + b(y2 − x2) + cxy, (7)

ith the coefficients ∆= 0.220 eV, a = 6.940 × 10−3 eV Å−4,
= 7.774 × 10−2 eV Å−2, and c = 9.717 × 10−3 eV Å−2 (the
otential is constructed in atomic units and only after conver-
ion the values of these parameters take the somehow strange
alues). The dipole moment is taken as a linear function in both
egrees of freedom: µ(x, y) = x + y (in atomic units).

Fig. 1 displays contour lines of the potential surface. Two
otential minima are clearly distinguishable which are separated
y a barrier of ∼0.22 eV. As an initial condition, the particle is
ocalized in the well at positive values of the reaction coordi-
ate x. This is simulated in choosing an initial wave function
esembling the ground state of a Hamiltonian with a potential
aving only the single well occurring at positive distances x.
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Fig. 1. Model system for a proton transfer. Shown are contours of the potential
energy surface with energy values of (in eV) 0.0027, 0.0272, 0.1360, 0.2721,
0.5442, 0.8163, 1.088. The upper panel shows the time-dependent coordinate
expectation value obtained from a quantum calculation. This orbit starts at the
position of the initial wave packet in the right hand potential well. Upon interac-
tion with the control field, the packet is transferred over the barrier and trapped
in the region left of the dividing line at y = 0. The final time of the orbit is 1 ps.
Lower panel: a single classical trajectory which is transferred by the classically
determined field.

The objective of the control process is to move the particle over
the barrier and localize it in the other potential well. Because we
regard times for which tunneling – taking place on a much longer
time-scale – can be neglected, this is only possible if energy is
transferred into the system by a heating field. Upon absorption
of sufficient energy, the particle might, eventually, cross the bar-
rier and reach the region of the second potential minimum (at
negative values of the reaction coordinate x). In order to stabilize
the system one then needs a cooling field diminishing the parti-
cle’s energy. Such a combination of heating and cooling fields is
realized as follows. Starting from the quantum rate expression
in the two-dimensional system

d

dt
〈H0〉t = 1

m
E(t)(〈Px〉t + 〈Py〉t), (8)

the field is determined as

E(t) = λ(〈Px〉t + 〈Py〉t), (〈x〉t > 0),

E(t) = −λ(〈Px〉t + 〈Py〉t), (〈x〉t < 0), (9)

Fig. 2. Time-dependent quantum mechanical densities as a function of the reac-
tion coordinateρ(x, t) (upper panel) and as a function of the additional vibrational
mode ρ(y, t) (lower panel).

where 〈x〉t denotes the expectation value of the reaction coordi-
nate. This choice ensures that, if the wave packet is localized
at positive values of x, the energy rate is positive (heating),
whereas if it has moved over the barrier, a cooling is per-
formed. The parameter λ is introduced to be able to vary the field
strength.

The results of the quantum mechanical calculation (for
λ= 4 × 10−4 a.u.) are contained in Fig. 1, upper panel. There,
the thick black line shows the time evolution of the expecta-
tion value of the position vector �Rqm(t) = (〈x〉t , 〈y〉t), where
the starting point is around �Rqm(t = 0) = (2.5,−0.2) Å . In the
figure, the time reaches up to 1000 fs. It can be seen that a vibra-
tional motion in the initially occupied potential well is induced.
This is followed by a barrier crossing and a motion confined to
negative values of x. Note that this ‘quantum trajectory’ does not
end up close to the minimum of the target potential well which
is due to the fact that the transfer is not achieved to a 100%. This
is illustrated in Fig. 2 which displays the densities

ρ(x, t) =
∫

dy|ψ(x, y, t)|2,

ρ(y, t) =
∫

dx|ψ(x, y, t)|2. (10)
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The reaction coordinate density ρ(x, t) (upper panel) shows
nicely the heating process which induces a vibrational motion,
and also the barrier crossing around 300 fs. Afterwards, during
the cooling process, most of the density is trapped at negative
values of x. There is, however, a smaller fraction of density which
becomes de-localized over the entire range of x between −4 and
4 Å. From the lower panel in Fig. 2 which contains the density
ρ(y, t) it is obvious, that the heating also triggers a vibrational
motion in the direction perpendicular to the reaction coordinate.
Indications can be found that a bifurcation of the density takes
place, where one main part becomes restricted to positions close
to y = 0, and another part performs a larger amplitude motion.
Altogether, the calculation shows that the objective of particle
transfer can be realized by the local control field – although, for
the present set of parameters, does not result in a 100% yield.

Let us now turn to the classical approach to the problem.
Therefore, a classical trajectory is started with zero momentum
at the quantum mechanically determined value �Rqm(t = 0). The
control field is derived from Eq. (9), where the expectation val-
ues are replaced by the canonical momenta Px(t) and Py(t), and
the same value of the strength parameter λ as used in the quan-
tum simulation is employed. In Fig. 1, lower panel, the classical
position vector �Rc(t) = (x(t), y(t)) is shown. A comparison to
the quantum case (upper panel) shows that the heating and bar-
rier crossing proceeds almost identical. It is only at later times,
that deviations are seen. In particular, the trajectory is forced
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Fig. 3. Comparison of control fields derived from a quantum (qm) and a classical
(cl) calculation, as indicated.

is kept constant at its equilibrium distance. The field is assumed
to be polarized along the z-axis so that it equally couples to the
two bonds. The potential surface and dipole moment function
depending on the two distances RH and RD are taken from Refs.
[23,25,26]. We employ the ‘light-heavy-light approximation’,
where the oxygen mass is set to infinity, so that no kinetic cou-
pling terms are present in the Hamiltonian [27].

In order to find an expression for a control field which is
able to break one or the other bond, we impose the condition
that the kinetic energy associated with the respective degree of
freedom increases, in the average (alternatively one could start
from expression (2), see Ref. [15]). Let us, in what follows,
concentrate on the selective population of the D + OH channel.
The rate is evaluated as

d

dt
〈T (PD)〉t = i

h̄
E(t)〈[T (PD), µ(RH, RD)]〉t . (11)

Here, mD and PD are the mass and momentum operator asso-
ciated with the D atom. In the present case, the dipole moment
is not a linear function of the coordinates [23], so that the expec-
tation value of the commutator is evaluated at each time step.
The control field is constructed as

E(t) = −λ�〈[T (PD), µ(RH, RD)]〉t , (12)

where � denotes the imaginary part of the complex (in fact,
purely imaginary) number. This choice ensures, for a positive
v
p

b

{

o end up at the bottom of the target potential well. The reason
s that only a single trajectory is taken into account and thus,
ecause the lack of dispersion (an ensemble of orbits starting
ith different initial conditions are driven differently by a single
eld, see below), the transfer yield is always a 100%. Neverthe-

ess, the quantum dynamics seems to be very much in accord
ith the classical motion, in the average. This point is strength-

ned if the control fields derived from the quantum expression
Eq. (9)) and its classical counterpart are compared. The latter
re shown in Fig. 3, as indicated. For times before the barrier
rossing, they are almost indistinguishable, tracking the momen-
um change in the system. When the crossing occurs, the fields
xhibit a phase jump reflecting the switching from the heating
o the cooling condition. At later times, the fields start deviating
rom each other, however, this difference is not dramatic. Thus,
n the present example, control fields indeed can be constructed
mploying the laws of classical mechanics.

.2. Energy transfer and dissociation

A photochemical process, where the absorption of photons
eads to the breaking of a specific bond, serves as a second
xample. The photo dissociation of water in the first absorp-
ion band is one of the best understood processes in molecular
hysics [21,22]. Combining ultraviolet and infrared (IR) fields,
everal studies reported on the possibility to control the branch-
ng ratio of OH versus OD products originating from the HOD

olecule [23,24]. In what follows, we exclude optical transitions
nd restrict our calculations to IR transitions within the ground
lectronic state of HOD. The molecule is assumed to be fixed in
he xz-plane, where the z-axis bisects the bending angle which
alue of the strength parameter λ, that the rate (Eq. (11)) is
ositive at all times.

The classical equivalent of the rate expression can be obtained
y using the correspondence

T (PD), µ(RH, RD)} = − i

h̄
[T (PD), µ(RH, RD)], (13)
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Fig. 4. Selective control of HOD fragmentation. The upper panel shows the
(quantum) dissociation yield in the D + OH channel; the respective yield in the
H + OD channel is zero. Middle panel: the quantum mechanical expectation
value 〈RD〉t is compared to two classical trajectories RD(t) which differ in their
initial condition and also follow from fields with different strength parameters.
The lower panel contains control fields constructed within a quantum mechanical
(solid line) and classical (long dashed and dashed-dotted lines) treatment.

which relates the classical Poisson brackets {,} to the quantum
mechanical commutator [28]. The rate expression then reads

d

dt
T (PD)(t) = 1

mD
E(t)PD(t)

∂µ(RH, RD)

∂RD
. (14)

This quantity assumes only positive values for the choice

E(t) = λPD(t)
∂µ(RH, RD)

∂RD
, (15)

with λ, being a positive strength factor.
In Fig. 4 the quantum mechanically obtained dissociation

yield in the D + OH channel is shown in the upper panel, where
a value of λ= 0.2 a.u. is used in determining the control field.
The yield is calculated from the norm of the wave packet which
exits into the fragmentation channel and is localized at values
larger than RD = 2.5 Å. It is seen that the curve starts deviat-
ing from zero after about 50 fs and increases in steps. This can
be understood in regarding the bond-length expectation value
〈RD〉t which is shown in the middle panel of the figure as a
solid line. In calculating this curve only the still bound parts of
the wave packet are taken into account. The initial wave func-
tion is the ground state of the system and it takes some time
until a vibrational motion is detectable, showing an increase
in the oscillation amplitude. After 50 fs, the energy of the sys-
tem has increased sufficiently, so that a first fraction of the
w
t

sity enter into the exit channel. It is noted that for the present
choice of parameters the yield of D + OH fragment is about
60% (obtained at long times) and that the excitation process
is perfectly selective because no H + OD reaction products are
built.

The figure also shows the classical position RD(t) (long
dashed line) obtained for a value of λ= 0.03 a.u. used in
Eq. (15). The trajectory is started with zero momentum at
RH(0) = RD(0) = 0.9 Å. It is seen, that here the energy absorp-
tion proceeds faster than in the quantum case leading to an
earlier D + OH dissociation. This is not due to intensity dif-
ferences in the control fields as can be taken from the lower
panel of Fig. 4. The amplitudes of the classically (long dashed
line) and quantum mechanically derived field (solid line) are
comparable but a phase shift is visible. Here, the interval below
50 fs should be regarded because afterwards dissociation sets in
so that the trajectory leaves into the exit channel, whereas the
wave packet shows a bifurcation into a bound and continuum
part.

It is clear that a single trajectory can mimic the quantum
dynamics only to a certain extent (a case where this is indeed
possible was presented in the last subsection). In order to inves-
tigate the sensitivity of the results with respect to the choice
of the initial conditions, another classical trajectory is started at
RH(0) = RD(0) = 0.96 Å with zero momentum. The field strength
parameter is set to λ= 0.07 a.u. so that the resulting control field
s
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ave packet is able to reach the continuum. At later times,
he heating proceeds and additional parts of probability den-
trength is comparable to the one obtained from the quantum
alculation (see lower panel of Fig. 4). The trajectory, displayed
s a dashed-dotted line in the middle panel of the same fig-
re shows a different oscillation period than the other orbit, as
s to be expected. As a consequence it enters the exit chan-
el at a different time which is close to the one where the
rst quantum wave packet is excited into the continuum. The
ependence of the classically derived control fields on the ini-
ial conditions (lower panel) suggest that one should employ
n ensemble of trajectories sampled from the initial quantum
ave function [29] and calculate an average field to be then
sed in the quantum calculation. Nevertheless, even a single
rbit yields a field which can serve as a sophisticated first guess
or a field employed as input in, e.g., a feedback adaptive con-
rol procedure [30–33] realized in an experiment. For recent
pplications of adaptive control see, e.g. [34–38], or the reviews
5,7,39].

Deviations between the quantum and classical treatment are
o be expected if a strong dispersion of the quantum mechani-
al wave packet is present. In this situation, the calculation of
xpectation values to be compared to their classical counter-
art becomes meaningless [40]. It is to be noted, that even the
uantum theory will not provide satisfactory results because
he construction of the fields from local control theory rests
n expectation values, for a discussion (and another numerical
xample) of the effect of delocalization see Ref. [41].

We finally mention that the oscillations of the average bond-
ength proceed with an increasing vibrational frequency which
hen is directly transferred into the field. Here, local control
aturally leads to a field possessing a down chirp being necessary
o achieve an effective ‘ladder climbing’ [42,43].
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4. Summary

Local control theory is used to determine fields which are
able to direct particle and energy transfer in molecules. In a
first example, the proton transfer in a double well potential is
regarded. There, the objective is to move the particle from one
well to the other. It is shown, that this can be achieved quan-
tum mechanically with a high efficiency. An analogous classical
treatment yields the same dynamics and, in particular, the con-
trol field resulting from both theories are very similar. Here, the
quantum wave packet remains rather localized so that the clas-
sical approximation is excellent. In particular, it has to be noted
that the phase of the electric field can be derived classically.
Thus, classical mechanics delivers a phase sensitive input for
the control process.

A different situation is encountered in the second exam-
ple considered, which is the photo fragmentation of the HOD
molecule. Aiming at a preferential population of a single reac-
tion channel, the quantum calculation shows that it is possible
to exclusively populate the target channel. Although the same is
obtained classically, the constructed fields differ to some extent.
Here, it becomes clear that a careful sampling of initial condi-
tions for the orbits is essential in order to be able to arrive at
satisfactory results. Nevertheless, even in the case of a single
orbit, the classical and quantum dynamics are similar so that a
classically constructed field is still helpful as a first guess of how
a
p

o
s
t
t
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Altogether, we believe that the potential of local control the-
ry, i.e. its ability to connect quantum and classical dynamics,
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